Extended eigenvalues for Cesàro operators

I just received the news that my paper entitled Extended eigenvalues for Cesàro operators has been accepted for its publication in the Journal of Mathematical Analysis and Applications. This is joint work with Fernando León-Saavedra (Jerez de la Frontera), Srdjan Petrovic (Kalamazoo) and Omid Zabeti (Sistan and Baluchestan). Here is the abstract of the paper.

A complex scalar \lambda is said to be an extended eigenvalue of a bounded linear operator T on a complex Banach space if there is a nonzero operator X such that TX= \lambda XT. Such an operator X is called an extended eigenoperator of T corresponding to the extended eigenvalue \lambda.

The purpose of this paper is to give a description of the extended eigenvalues for the discrete Cesàro operator C_0, the finite continuous Cesàro operator C_1 and the infinite continuous Cesàro operator C_\infty defined on the complex Banach spaces \ell^p, L^p[0,1] and L^p[0,\infty) for 1 < p <\infty by the expressions

\displaystyle{  (C_0f)(n) \colon  = \frac{1}{n+1} \sum_{k=0}^n f(k),}

\displaystyle{  (C_1f)(x) \colon = \frac{1}{x} \int_0^x f(t)\,dt,}

\displaystyle{  (C_\infty f)(x) \colon  = \frac{1}{x} \int_0^x f(t)\,dt.}

It is shown that the set of extended eigenvalues for C_0 is the interval [1,\infty), that for C_1 it is the interval (0,1], and that for C_\infty it reduces to the singleton \{1\}.

Acerca de Miguel Lacruz

Gijón, Asturias, España, 1963
Esta entrada fue publicada en Research. Guarda el enlace permanente.


Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s